
Hands-On Machine Learning with R, 2ed

Brad Boehmke & Brandon Greenwell

2024-10-24

Table of contents

Welcome 4
Who should read this . 4
Why R . 5
Conventions used in this book . 5
Additional resources . 6
Acknowledgments . 6
Software information . 7

Preface to the second edition 11

1 Introduction to Machine Learning 12
1.1 Supervised learning . 13

1.1.1 Regression problems . 14
1.1.2 Classification problems . 15
1.1.3 Knowledge check . 16

1.2 Unsupervised learning . 17
1.2.1 Knowledge check . 20

1.3 Reinforcement learning . 20
1.4 Generative AI . 21
1.5 Machine learning in . 23

1.5.1 Knowledge check . 25
1.6 Roadmap . 25
1.7 Data sets . 26
1.8 Exercises . 26

I Supervised Learning 27

2 First model with Tidymodels 28
2.1 Prerequisites . 29
2.2 Data splitting . 29

2.2.1 Simple random sampling . 31
2.2.2 Stratified sampling . 32
2.2.3 Class imbalances . 33
2.2.4 Knowledge check . 34

2

2.3 Building models . 34
2.3.1 Knowledge check . 38

2.4 Making predictions . 38
2.4.1 Knowledge check . 40

2.5 Model evaluation . 40
2.5.1 Regression models . 41
2.5.2 Classification models . 43
2.5.3 Knowledge check . 48

2.6 Exercises . 48

3 Linear regression 49
3.1 Prerequisites . 49
3.2 Correlation . 50

3.2.1 Knowledge check . 54
3.3 Simple linear regression . 54

3.3.1 Best fit line . 55
3.3.2 Estimation . 57
3.3.3 Inference . 60
3.3.4 Making predictions . 62
3.3.5 Assessing model accuracy . 63
3.3.6 Knowledge check . 66

3.4 Multiple linear regression . 66
3.5 Exercises . 66

References 68

3

Welcome

Welcome to the second edition of Hands-On Machine Learning with R. This book provides
hands-on modules for many of the most common machine learning methods to include:

• Generalized low rank models
• Clustering algorithms
• Autoencoders
• Regularized models
• Random forests
• Gradient boosting machines
• Deep neural networks
• Stacking / super learners
• and more!

You will learn how to build and tune these various models with R packages that have been
tested and approved due to their ability to scale well. However, our motivation in almost every
case is to describe the techniques in a way that helps develop intuition for its strengths and
weaknesses. For the most part, we minimize mathematical complexity when possible but also
provide resources to get deeper into the details if desired.

Note

This book is undergoing heavy restructuring and may be confusing or incomplete; how-
ever, we hope for the first draft to be completed by the fall of 2023. You can find the
complete first edition at bradleyboehmke.github.io/HOML.

Who should read this

We intend this work to be a practitioner’s guide to the machine learning process and a place
where one can come to learn about the approach and to gain intuition about the many com-
monly used, modern, and powerful methods accepted in the machine learning community. If
you are familiar with the analytic methodologies, this book may still serve as a reference for
how to work with the various R packages for implementation.

4

https://bradleyboehmke.github.io/HOML/

This book is not meant to be an introduction to R or to programming in general; as we
assume the reader has familiarity with the R language to include defining functions, managing
R objects, controlling the flow of a program, and other basic tasks. If not, we would refer you to
R for Data Science (Wickham and Grolemund 2016) to learn the fundamentals of data science
with R such as importing, cleaning, transforming, visualizing, and exploring your data. For
those looking to advance their R programming skills and knowledge of the language, we would
refer you to Advanced R (Wickham 2014). Nor is this book designed to be a deep dive into the
theory and math underpinning machine learning algorithms. Several books already exist that
do great justice in this arena (i.e. Elements of Statistical Learning (Hastie, Tibshirani, and
Friedman 2009), Computer Age Statistical Inference (Efron and Hastie 2016), Deep Learning
(Goodfellow, Bengio, and Courville 2016)).

Instead, this book is meant to help R users learn to use the machine learning stack within R,
which includes using various R packages such as the tidymodels ecosystem of packages for
model development, vip and pdp for model interpretation, TODO (add others as we develop)
and others to effectively model and gain insight from your data. The book favors a hands-on
approach, growing an intuitive understanding of machine learning through concrete examples
and just a little bit of theory. While you can read this book without opening R, we highly
recommend you experiment with the code examples provided throughout.

Why R

In this book we focus on implementing machine learning tasks with R. R has emerged over the
last couple decades as a first-class tool for scientific computing tasks, and has been a consistent
leader in implementing statistical methodologies for analyzing data. The usefulness of R for
data science stems from the large, active, and growing ecosystem of third-party packages. We
are not ignoring other languages such as Python or Julia because we think these tools are
inferior. They’re not! And in practice, most organizations and data science teams use a mix
of languages. In fact, throughout this book we may reference methods or implementations in
other languages and we may even provide a few examples in Python. However, we strongly
believe that it’s best to master one tool at a time, and R is a great place to start.

Conventions used in this book

The following typographical conventions are used in this book:

• strong italic: indicates new terms,
• bold: indicates package & file names,
• inline code: monospaced highlighted text indicates functions or other commands that

could be typed literally by the user,
• code chunk: indicates commands or other text that could be typed literally by the user

5

http://r4ds.had.co.nz/index.html
http://adv-r.had.co.nz/
https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/CASI/
http://www.deeplearningbook.org/
https://www.tidymodels.org/packages/
https://github.com/koalaverse/vip
https://github.com/bgreenwell/pdp

1 + 2
[1] 3

In addition to the general text used throughout, you will notice the following code chunks with
images:

Tip

Signifies a tip or suggestion

Note

Signifies a general note

Warning

Signifies a warning or caution

Additional resources

There are many great resources available to learn about machine learning. Throughout the
chapters we try to include many of the resources that we have found extremely useful for dig-
ging deeper into the methodology and applying with code. However, due to print restrictions,
the hard copy version of this book limits the concepts and methods discussed. Online sup-
plementary material exists at https://koalaverse.github.io/homlr/. The additional material
will accumulate over time and include extended chapter material (i.e., random forest package
benchmarking) along with brand new content we couldn’t fit in (i.e., random hyperparameter
search). In addition, you can download the data used throughout the book, find teaching
resources (i.e., slides and exercises), and more.

Acknowledgments

We’d like to thank everyone who contributed feedback, typo corrections, and discussions while
the book was being written. GitHub contributors included @agailloty, @asimumba, @benprew,
@bfgray3, @bragks, @cunningjames, @DesmondChoy, @erickeniuk, @j-ryanhart, @lcreteig,
@liangwu82, @Lianta, @mccurcio, @mmelcher76, @MMonterosso89, @nsharkey, @raycblai,
@schoonees, @tpristavec and @william3031. We’d also like to thank folks such as Alex Gutman,
Greg Anderson, Jay Cunningham, Joe Keller, Mike Pane, Scott Crawford, and several other
co-workers who provided great input around much of this machine learning content.

6

Software information

This book was built with the following packages and R version. All code was executed on 2019
MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 processor, 16 GB of memory, 2667 MHz
speed, and double data rate synchronous dynamic random access memory (DDR4).

packages used
pkgs <- c(

"modeldata",
"tidymodels",
"vip"

)

package & session info
sessioninfo::session_info(pkgs)
#> - Session info ---
#> setting value
#> version R version 4.2.0 (2022-04-22)
#> os Ubuntu 22.04.5 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C.UTF-8
#> ctype C.UTF-8
#> tz UTC
#> date 2024-10-24
#> pandoc 2.9.2.1 @ /usr/bin/ (via rmarkdown)
#>
#> - Packages ---
#> package * version date (UTC) lib source
#> backports 1.5.0 2024-05-23 [1] CRAN (R 4.2.0)
#> broom 1.0.7 2024-09-26 [1] CRAN (R 4.2.0)
#> cachem 1.1.0 2024-05-16 [1] CRAN (R 4.2.0)
#> class 7.3-20 2022-01-16 [3] CRAN (R 4.2.0)
#> cli 3.6.3 2024-06-21 [1] CRAN (R 4.2.0)
#> clock 0.7.1 2024-07-18 [1] CRAN (R 4.2.0)
#> codetools 0.2-18 2020-11-04 [3] CRAN (R 4.2.0)
#> colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.2.0)
#> conflicted 1.2.0 2023-02-01 [1] CRAN (R 4.2.0)
#> cpp11 0.5.0 2024-08-27 [1] CRAN (R 4.2.0)
#> data.table 1.16.2 2024-10-10 [1] CRAN (R 4.2.0)
#> diagram 1.6.5 2020-09-30 [1] CRAN (R 4.2.0)

7

#> dials 1.3.0 2024-07-30 [1] CRAN (R 4.2.0)
#> DiceDesign 1.10 2023-12-07 [1] CRAN (R 4.2.0)
#> digest 0.6.37 2024-08-19 [1] CRAN (R 4.2.0)
#> doFuture 1.0.1 2023-12-20 [1] CRAN (R 4.2.0)
#> dplyr 1.1.4 2023-11-17 [1] CRAN (R 4.2.0)
#> fansi 1.0.6 2023-12-08 [1] CRAN (R 4.2.0)
#> farver 2.1.2 2024-05-13 [1] CRAN (R 4.2.0)
#> fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.2.0)
#> foreach 1.5.2 2022-02-02 [1] CRAN (R 4.2.0)
#> furrr 0.3.1 2022-08-15 [1] CRAN (R 4.2.0)
#> future 1.34.0 2024-07-29 [1] CRAN (R 4.2.0)
#> future.apply 1.11.2 2024-03-28 [1] CRAN (R 4.2.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
#> ggplot2 3.5.1 2024-04-23 [1] CRAN (R 4.2.0)
#> globals 0.16.3 2024-03-08 [1] CRAN (R 4.2.0)
#> glue 1.8.0 2024-09-30 [1] CRAN (R 4.2.0)
#> gower 1.0.1 2022-12-22 [1] CRAN (R 4.2.0)
#> GPfit 1.0-8 2019-02-08 [1] CRAN (R 4.2.0)
#> gtable 0.3.5 2024-04-22 [1] CRAN (R 4.2.0)
#> hardhat 1.4.0 2024-06-02 [1] CRAN (R 4.2.0)
#> infer 1.0.7 2024-03-25 [1] CRAN (R 4.2.0)
#> ipred 0.9-15 2024-07-18 [1] CRAN (R 4.2.0)
#> isoband 0.2.7 2022-12-20 [1] CRAN (R 4.2.0)
#> iterators 1.0.14 2022-02-05 [1] CRAN (R 4.2.0)
#> KernSmooth 2.23-20 2021-05-03 [3] CRAN (R 4.2.0)
#> labeling 0.4.3 2023-08-29 [1] CRAN (R 4.2.0)
#> lattice 0.20-45 2021-09-22 [3] CRAN (R 4.2.0)
#> lava 1.8.0 2024-03-05 [1] CRAN (R 4.2.0)
#> lhs 1.2.0 2024-06-30 [1] CRAN (R 4.2.0)
#> lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.2.0)
#> listenv 0.9.1 2024-01-29 [1] CRAN (R 4.2.0)
#> lubridate 1.9.3 2023-09-27 [1] CRAN (R 4.2.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
#> MASS 7.3-56 2022-03-23 [3] CRAN (R 4.2.0)
#> Matrix 1.4-1 2022-03-23 [3] CRAN (R 4.2.0)
#> memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.0)
#> mgcv 1.8-40 2022-03-29 [3] CRAN (R 4.2.0)
#> modeldata 1.4.0 2024-06-19 [1] CRAN (R 4.2.0)
#> modelenv 0.2.0 2024-10-14 [1] CRAN (R 4.2.0)
#> munsell 0.5.1 2024-04-01 [1] CRAN (R 4.2.0)
#> nlme 3.1-157 2022-03-25 [3] CRAN (R 4.2.0)
#> nnet 7.3-17 2022-01-16 [3] CRAN (R 4.2.0)

8

#> numDeriv 2016.8-1.1 2019-06-06 [1] CRAN (R 4.2.0)
#> parallelly 1.38.0 2024-07-27 [1] CRAN (R 4.2.0)
#> parsnip 1.2.1 2024-03-22 [1] CRAN (R 4.2.0)
#> patchwork 1.3.0 2024-09-16 [1] CRAN (R 4.2.0)
#> pillar 1.9.0 2023-03-22 [1] CRAN (R 4.2.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
#> prettyunits 1.2.0 2023-09-24 [1] CRAN (R 4.2.0)
#> prodlim 2024.06.25 2024-06-24 [1] CRAN (R 4.2.0)
#> progressr 0.14.0 2023-08-10 [1] CRAN (R 4.2.0)
#> purrr 1.0.2 2023-08-10 [1] CRAN (R 4.2.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
#> RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.2.0)
#> Rcpp 1.0.13 2024-07-17 [1] CRAN (R 4.2.0)
#> recipes 1.1.0 2024-07-04 [1] CRAN (R 4.2.0)
#> rlang 1.1.4 2024-06-04 [1] CRAN (R 4.2.0)
#> rpart 4.1.16 2022-01-24 [3] CRAN (R 4.2.0)
#> rsample 1.2.1 2024-03-25 [1] CRAN (R 4.2.0)
#> rstudioapi 0.17.1 2024-10-22 [1] CRAN (R 4.2.0)
#> scales 1.3.0 2023-11-28 [1] CRAN (R 4.2.0)
#> sfd 0.1.0 2024-01-08 [1] CRAN (R 4.2.0)
#> shape 1.4.6.1 2024-02-23 [1] CRAN (R 4.2.0)
#> slider 0.3.1 2023-10-12 [1] CRAN (R 4.2.0)
#> SQUAREM 2021.1 2021-01-13 [1] CRAN (R 4.2.0)
#> stringi 1.8.4 2024-05-06 [1] CRAN (R 4.2.0)
#> stringr 1.5.1 2023-11-14 [1] CRAN (R 4.2.0)
#> survival 3.3-1 2022-03-03 [3] CRAN (R 4.2.0)
#> tibble 3.2.1 2023-03-20 [1] CRAN (R 4.2.0)
#> tidymodels 1.2.0 2024-03-25 [1] CRAN (R 4.2.0)
#> tidyr 1.3.1 2024-01-24 [1] CRAN (R 4.2.0)
#> tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.2.0)
#> timechange 0.3.0 2024-01-18 [1] CRAN (R 4.2.0)
#> timeDate 4041.110 2024-09-22 [1] CRAN (R 4.2.0)
#> tune 1.2.1 2024-04-18 [1] CRAN (R 4.2.0)
#> tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.2.0)
#> utf8 1.2.4 2023-10-22 [1] CRAN (R 4.2.0)
#> vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.2.0)
#> vip 0.4.1 2023-08-21 [1] CRAN (R 4.2.0)
#> viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.2.0)
#> warp 0.2.1 2023-11-02 [1] CRAN (R 4.2.0)
#> withr 3.0.1 2024-07-31 [1] CRAN (R 4.2.0)
#> workflows 1.1.4 2024-02-19 [1] CRAN (R 4.2.0)
#> workflowsets 1.1.0 2024-03-21 [1] CRAN (R 4.2.0)

9

#> yardstick 1.3.1 2024-03-21 [1] CRAN (R 4.2.0)
#>
#> [1] /home/runner/work/_temp/Library
#> [2] /opt/R/4.2.0/lib/R/site-library
#> [3] /opt/R/4.2.0/lib/R/library
#>
#> --

10

Preface to the second edition

Welcome to the second edition of Hands-On Machine Learning with R! This is a major re-
working of the first edition, removing material we no longer think is useful, adding material
we wish we included in the first edition, and generally updating the text and code to reflect
changes in best practices.

A brief summary of the biggest changes follows:

• TBD
• TBD
• TBD

11

1 Introduction to Machine Learning

Machine learning (ML) continues to grow in importance for many organizations across nearly
all domains. There’s no shortage of definitions for the term machine learning. For the purposes
of this book, we can think of it as a blended field with a focus on using algorithms to help
learn from data. This process of learning from data results in a model, which we can use to
make predictions.

Some example applications of machine learning in practice include:

• Predicting the likelihood of a patient returning to the hospital (readmission) within 30
days of discharge.

• Predicting songs to recommend to listeners on a music app.
• Predicting the estimated travel time to drive from your home to work.
• Predicting a segmentation that a customer aligns to based on common attributes or

purchasing behavior for targeted marketing.
• Predicting coupon redemption rates for a given marketing campaign.
• Predicting customer (or employee) churn so an organization can perform preventative

intervention.
• And many more!

In essence, these tasks all seek to learn and draw inferences from patterns in data. To address
each scenario, we can use a given set of features to train an algorithm and extract insights.
These algorithms, or learners, can be classified according to how they learn to make predictions
and the four main groups of learners are:

• Supervised learning
• Unsupervised learning
• Reinforcement learning
• Generative artificial intelligence (AI)

Which type you will need to use depends on the learning task you hope to accomplish; and the
primary focus of this book is on the first two groups of learners - supervised and unsupervised
learning.

12

1.1 Supervised learning

Supervised learning is a set of ML learners that learn the relationship between inputs (often
referred to as features or predictors) and output(s) (often referred to as the target variable).
Or, as stated by Kuhn and Johnson (2013, 26:2), supervised learning is “…the process of
developing a mathematical tool or model that generates an accurate prediction.” The learning
algorithm in a supervised learning model attempts to discover and model the relationships
among the target variable (the variable being predicted) and the other features (aka predictor
variables). Examples of predictive modeling include the following:

• Using customer attributes to predict the probability of the customer churning in the next
6 weeks.

• Using various home attributes to predict the sales price.
• Using employee attributes to predict the likelihood of attrition within the next six

months.
• Using patient attributes and symptoms to predict the risk of being readmitted to the

hospital within 30 days after release.
• Using product attributes to predict time to market.
• Using weather conditions and relevant historical information to predict the number of

bikes that will be rented out on a given day.

Each of these examples has a defined learning task; they each intend to use various features
(𝑋) to predict a well-defined target (𝑌). Think about the hospital readmission example.
Predicting the liklihood of readmittance is not specific enough and will make pulling together
relevant data a challenge, so we need to think carefully aabout how we define the features and
response for modeling. Defining the target as whether or not a patient was readmitted within
30 days after release is something that can easily be measured, assuming it’s relevant to the
stakeholders.

The scenarios listed above are examples of supervised learning. The supervision refers to the
fact that the target values provide a supervisory role, which indicates to the learner the task
it needs to learn. Specifically, given a set of data, the learning algorithm attempts to optimize
a function (the algorithmic steps) to find the combination of feature values that results in a
predicted value that is as close to the actual target output as possible.

Note

In supervised learning, the training data you feed the algorithm includes the target values.
Consequently, the solutions can be used to help supervise the training process to find the
optimal algorithm parameters, called hyperparameters.

Most supervised learning problems can be bucketed into one of two general categories, regres-
sion or classification, depending on the type of response variable. We’ll briefly discuss both
cases over the next two sections.

13

Note

Throughout this text we’ll use various terms and notation interchangeably. In particular,

• we’ll use 𝑋 to denote a feature, predictor, or attribute (we may even use the more
classic term independent variable);

• bold notation may be used to denote a set of features, for example 𝑋 = (𝑋1, 𝑋2),
where, in the case of the predicting sale price example, 𝑋1 might represent square
footage and 𝑋2 represent the overall quality of the home;

• we’ll use 𝑦 when referring to response or target variable (again, we may sometimes
use the more classic term dependent variable).

1.1.1 Regression problems

When the objective is to predict a quantitative outcome, we generally refer to this as a re-
gression problem (not to be confused with linear regression modeling, which is a special case).
Regression problems revolve around numeric output where both order and distance matters
(e.g., sales or a discrete count, like the number of bike rentals in a given day). In the examples
above, predicting home sale prices based home attributes is a regression problem because the
output is ordered and values closer to each other are closer in nature (e.g., the closer two sale
prices are to each other the more similar the homes are in terms of sale value).

Figure 1.1 shows a regression model’s predicted sale price of homes in Ames, Iowa (from 2006–
2010) as a function of two attributes: year built and total square footage. Depending on the
combination of these two features, the expected home sales price could fall anywhere along
the surface.

See Table 1.1 for a few more examples of regression models:

Table 1.1: Example regression problems

Scenario Potential features Numeric prediction
Predict home prices Square footage, zip code, number of

bedrooms and bathrooms, lot size,
mortgage interest rate, property tax rate,
construction costs, and number of homes
for sale in the area.

The home price in
dollars.

Predict ride time Historical traffic conditions (gathered from
smartphones, traffic sensors, ride-hailing
and other navigation applications), distance
from destination, and weather conditions.

The time in minutes
and seconds to arrive
at a destination.

14

Scenario Potential features Numeric prediction
Predict loan interest
rate

Customer credit score, number of loans
outstanding, historical repayment history,
size of loan requested, current inflation and
treasury rates.

The interest rate to
be applied to a loan.

We’ll learn various ways of building such a model in Part II of this book (TODO: cross-reference
“Part II”).

1.1.2 Classification problems

When the objective of our supervised learning is to predict a qualitative (or categorical out-
come), we refer to this generally as a classification problem. Classification problems most
commonly revolve around predicting a binary or multinomial response measure such as:

• Predicting if a customer will redeem a coupon (coded as yes/no or 1/0)?
• Predicting if a customer will churn (coded as yes/no or 1/0)?
• Predicting if a customer will click on our online ad (coded as yes/no or 1/0)?
• Predicting if a customer review is:

– Binary: positive vs. negative.
– Multinomial: extremely negative to extremely positive on a 0–5 Likert scale.

However, when we apply ML models to classification problems, rather than predict a particular
class (i.e., “yes” or “no”), we often want to predict the conditional probability of a particular
class (i.e., yes: 0.65, no: 0.35).1 By default, the class with the highest predicted probability
becomes the predicted class (called a classification). Consequently, even though we classify it
as a classification problem (pun intended), we’re often still predicting a numeric output (i.e.,
a probability). However, the nature of the target variable is what makes it a classification
problem.

Table 1.2 illustrates some example classification predictions where the model predicts the
conditional probability of “Yes” and “No” classes. A threshold of 0.5 probability is used to
determine if the predicted class is “Yes” or “No”.

Table 1.2: Example classification predictions

Predicted “Yes” probability Predicted “No” probability Predicted class
0.65 0.35 Yes
0.15 0.85 No

1Conditional on the set of input feature values.

15

Predicted “Yes” probability Predicted “No” probability Predicted class
0.43 0.57 No

� � �
0.72 0.28 Yes

Throughout this book we will commonly use the term classification for brevity; however, the
distinction between predicting the probability of an output and classifying that prediction into
a particular class is important and should not be overlooked. Frank Harrell’s discussion on
classification versus prediction (Harrell 2017) is an excellent read to delve deeper into this
distinction, along with why and when we should be focusing on probability prediction over
classification and vice versa.

Although there are ML algorithms that can be applied to regression problems but not classifi-
cation and vice versa, most of the supervised learning algorithms we’ll cover in this book can
be applied to both. These algorithms have become some of the most popular machine learning
models in recent years (often driven by their availability in both proprietary and open-source
software).

1.1.3 Knowledge check

Caution

Identify the features, response variable, and the type of supervised model (regression or
classification) required for the following tasks:

• There is an online retailer that wants to predict whether you will click on a certain
featured product given your demographics, the current products in your online
basket, and the time since your previous purchase.

• A bank wants to use a customers historical data such as the number of loans they’ve
had, the time it took to payoff those loans, previous loan defaults, the number of
new loans within the past two years, along with the customers income and level of
education to determine if they should issue them a new loan for a car.

• If the bank above does issue a new loan, they want to use the same information to
determine the interest rate of the new loan issued.

• To better plan incoming and outgoing flights, an airline wants to use flight infor-
mation such as scheduled flight time, day/month of year, number of passengers,
airport departing from, airport arriving to, distance to travel, and weather warn-
ings to determine if a flight will be delayed.

• What if the above airline wants to use the same information to predict the number
of minutes a flight will arrive late or early?

16

Squ
ar

e f
oo

tag
eYear built

S
ale price

Figure 1.1: Average home sales price as a function of year built and total square footage.

1.2 Unsupervised learning

Unsupervised learning, in contrast to supervised learning, includes a set of statistical tools to
better understand and describe your data, but performs the analysis without a target variable.
In essence, unsupervised learning is concerned with identifying groups in a data set. The
groups may be defined by the rows (i.e., clustering) or the columns (i.e., dimension reduction);
however, the motive in each case is quite different.

The goal of clustering is to segment observations into similar groups based on the observed
variables; for example, dividing consumers into different homogeneous groups, a process known
as market segmentation.

Clustering differs from classification because the categories aren’t defined by you. For exam-
ple, Figure 1.3 shows how an unsupervised model might cluster a weather dataset based on
temperature, revealing segmentations that define the seasons. You would then have to name
those clusters based on your understanding of the dataset.

In dimension reduction, we are often concerned with reducing the number of variables in
a data set. For example, classical linear regression models break down in the presence of
highly correlated features, a situation known as multicollinearity.2 Some dimension reduction
techniques can be used to reduce the feature set to a potentially smaller set of uncorrelated

2To be fair, and as we’ll see later in the book, the interpretation of most fitted ML models becomes problematic
in the presence of correlated or (otherwise dependent) fetures.

17

x1

Model

x2 x3

Yes No

Figure 1.2: Classification problem modeling ‘Yes’/‘No’ response based on three features.

18

(a) Data containing similar weather patterns. (b) Clusters of weather patterns labeled as snow,
sleet, rain, and no rain.

Figure 1.3: Clustering weather patterns which we would label the clusters based on our under-
standing of the data.

variables. Such a reduced feature set is often used as input to downstream supervised learning
models (e.g., principal component regression).

Unsupervised learning is often performed as part of an exploratory data analysis (EDA). How-
ever, the exercise tends to be more subjective, and there is no simple goal for the analysis,
such as prediction of a response. Furthermore, it can be hard to assess the quality of results
obtained from unsupervised learning methods. The reason for this is simple. If we fit a pre-
dictive model using a supervised learning technique (e.g., linear regression), then it is possible
to check our work by seeing how well our model predicts the response 𝑦 on new observations
not used in fitting the model. However, in unsupervised learning, there’s no way to check our
work because we don’t know the true answer—the problem is unsupervised!

Despite its subjectivity, the importance of unsupervised learning should not be overlooked and
such techniques are often used in organizations to:

• Divide consumers into different homogeneous groups so that tailored marketing strategies
can be developed and deployed for each segment.

• Identify groups of online shoppers with similar browsing and purchase histories, as well
as items that are of particular interest to the shoppers within each group. Then an
individual shopper can be preferentially shown the items in which he or she is particularly
likely to be interested, based on the purchase histories of similar shoppers.

• Identify products that have similar purchasing behavior so that managers can manage
them as product groups.

These questions, and many more, can be addressed with unsupervised learning. Moreover,
the outputs of unsupervised learning models can be used as inputs to downstream supervised
learning models.

19

1.2.1 Knowledge check

Caution

Identify the type of unsupervised model required for the following tasks:

• Say you have a YouTube channel. You may have a lot of data about the subscribers
of your channel. What if you want to use that data to detect groups of similar
subscribers?

• Say you’d like to group Ohio counties together based on the demographics of their
residents.

• A retailer has collected hundreds of attributes about all their customers; however,
many of those features are highly correlated. They’d like to reduce the number of
features down by combining all those highly correlated features into groups.

1.3 Reinforcement learning

Reinforcement learning (RL) refers to a family of algorithms that learn to make predictions by
getting rewards or penalties based on actions performed within an environment. A reinforce-
ment learning system generates a policy that defines the best strategy for getting the most
rewards.

This best strategy is learned through interactions with the environment and observations of
how it responds. In the absence of a supervisor, the learner must independently discover the
sequence of actions that maximize the reward. This discovery process is akin to a trial-and-
error search. The quality of actions is measured by not just the immediate reward they return,
but also the delayed reward they might fetch. As it can learn the actions that result in eventual
success in an unseen environment without the help of a supervisor, reinforcement learning is
a very powerful algorithm.

A few examples of RL include:

• Robotics. Robots with pre-programmed behavior are useful in structured environments,
such as the assembly line of an automobile manufacturing plant, where the task is repet-
itive in nature. However, in the unpredictable real world, where the interaction between
a robot’s actions and the environment is uncertain, achieving precise pre-programmed ac-
tions becomes exceedingly challenging. In such situations, Reinforcement Learning (RL)
offers an effective approach to develop versatile robots. RL has demonstrated success
in the context of robotic path planning, where robots need to autonomously discover
optimal, obstacle-free, and dynamically compatible paths between two locations.

20

https://lamarr-institute.org/blog/reinforcement-learning-and-robotics/

• AlphaGo. Go, a Chinese board game dating back 3,000 years, stands out as one of
the most intricate strategic games known. Its complexity is attributed to the staggering
number of possible board configurations, estimated at 10^270, surpassing the complexity
of chess by several orders of magnitude. In 2016, AlphaGo, an artificial intelligence agent
based on Reinforcement Learning (RL), achieved victory against the world’s top human
Go player. Much like a human player, AlphaGo learned through experience, engaging in
thousands of games against professional opponents. Notably, the most recent RL-based
Go agent possesses the unique ability to enhance its skills by playing against itself, a
capability not available to human players.

• Autonomous Driving. An autonomous driving system faces the challenge of executing
numerous perception and planning functions within an environment characterized by
uncertainty. Reinforcement Learning (RL) is employed in various specific tasks, including
vehicle path planning and motion prediction. Vehicle path planning entails the use
of multiple low and high-level policies to make decisions that span different temporal
and spatial scales. On the other hand, motion prediction involves the anticipation of
pedestrian and other vehicle movements, thereby enabling an understanding of how the
current environmental state might evolve.

Reinforcement learning as field has existed for quite some time but it really gained main-
stream popularity after DeepMind’s break through application of Q-learning to play Atari
games (Mnih et al. 2013). Since then reinforcement learning has experienced several major
breakthroughs and gains in popularity. Unfortunately, this topic is beyond the scope of this
book but we recommend Sutton and Barto (2018), Powell (2021), and Szepesvári (2022) to
learn more about RL.

1.4 Generative AI

Generative AI represents a category of models that generate content based on user input.
It possesses the capability to generate various forms of content, including original images,
musical compositions, and humorous jokes. Additionally, it can summarize articles, provide
instructions for performing tasks, or even enhance and modify photographs.

Generative AI is versatile in its ability to work with a wide range of inputs and produce
diverse outputs, encompassing text, images, audio, and video. Furthermore, it can handle
combinations of these input and output types. For instance, a model can take an image as
input and generate both an image and accompanying text as output, or it can accept input in
the form of an image and text and produce a video as the output.

We can discuss generative models by their inputs and outputs, typically written as “type of
input”-to-“type of output.” For example, the following is a partial list of some inputs and
outputs for generative models:

• Text-to-text

21

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://arxiv.org/pdf/2002.00444.pdf

• Text-to-image
• Text-to-video
• Text-to-code
• Text-to-speech
• Image and text-to-image

Table 1.3 lists example use-cases of generative models.

Table 1.3: Examples of generative models, their input, and an example of their possible output.

Model Input Example output
Text-to-text Who came up with the

michelin star rating for
restaurants?

The Michelin star rating system for
restaurants was introduced by the French
tire company Michelin. The system was
first developed in the early 20th century as
a means to promote travel and, by
extension, the use of automobiles, in order
to increase the demand for tires. Michelin
began publishing restaurant and hotel
guides in 1900, and in 1926, they started
awarding stars to restaurants in recognition
of their culinary excellence. The Michelin
Guide is highly regarded in the culinary
world, and Michelin stars have become a
prestigious mark of quality for restaurants.
[source: ChatGPT]

Text-to-image A brain riding a
rocketship heading
towards the moon.

[source:
Imagen]

Text-to-code Write a hello world
statement in R

print("Hello, World!") [source: Bard]

22

https://chat.openai.com
https://imagen.research.google
https://bard.google.com/

Model Input Example output

Image-to-text This is a flamingo. They are found in the
Caribbean. [Source: Google DeepMind]

How does generative AI work? At a high-level, generative models learn patterns in data
with the goal to produce new but similar data. To produce unique and creative outputs,
generative models are initially trained using an unsupervised approach, where the model learns
to mimic the data it’s trained on. The model is sometimes trained further using supervised or
reinforcement learning on specific data related to tasks the model might be asked to perform,
for example, summarize an article or edit a photo.

Generative AI is a quickly evolving technology with new use cases constantly being discovered.
For example, generative models are helping businesses refine their ecommerce product images
by automatically removing distracting backgrounds or improving the quality of low-resolution
images.

Although this book does not delve into generative AI directly, the deep learning chapters do
provide the foundation that many generative AI models are built upon.

1.5 Machine learning in

The ML open-source ecosystem is a vibrant and rapidly evolving collection of software tools,
libraries, frameworks, and platforms that are made freely available to the public for building,
training, and deploying ML. This ecosystem has played a crucial role in democratizing ML
and making ML accessible to a wide range of data scientists, researchers, and organizations.

Although this ecosystem expands multiple programming languages, our focus will predomi-
nately be with the R programming language. The R ecosystem provides a wide variety of
ML algorithm implementations. This makes many powerful algorithms available at your fin-
gertips. Moreover, there are almost always more than one package to perform each algorithm
(e.g., there are over 20 packages for fitting random forests). There are pros and cons to this
wide selection; some implementations may be more computationally efficient while others may
be more flexible (i.e., have more hyperparameter tuning options).

23

https://deepmind.google/

This book will expose you to many of the R packages and algorithms that perform and scale
best to the kinds of data and problems encountered by most organizations while also showing
you how to use implementations that provide more consistency.

For example, more recently, development on a group of packages called Tidymodels has
helped to make implementation easier. The tidymodels collection allows you to perform
discrete parts of the ML workflow with discrete packages:

• rsample for data splitting and resampling
• recipes for data pre-processing and feature engineering
• parsnip for applying algorithms
• tune for hyperparameter tuning
• yardstick for measuring model performance
• and several others!

Note

The tidymodels package is a meta package, or a package of packages, that will install
several packages that exist in the tidymodels ecosystem.

Throughout this book you’ll be exposed to several of these packages and more. Moreover, in
some cases, ML algorithms are available in one language but not another. As data scientists,
we need to be comfortable in finding alternative solutions to those available in our native
programming language of choice. Consequently, we may even provide examples of implemen-
tations using other languages such as Python or Julia.

Prior to moving on, let’s take the time to make sure you have the required packages installed.

TODO

Once book is complete provide link to DESCRIPTION file or alternative approach for
an easy way for readers to install all requirements. Maybe discuss renv??

data wrangling
install.packages(c("here", "tidyverse"))

modeling
install.packages("tidymodels")

model interpretability
install.packages(c("pdp", "vip"))

24

https://www.tidymodels.org/
https://rsample.tidymodels.org/
https://recipes.tidymodels.org/
https://parsnip.tidymodels.org/
https://tune.tidymodels.org/
https://yardstick.tidymodels.org/

packageVersion("tidymodels")
[1] '1.2.0'

library(tidymodels)
-- Attaching packages -------------------------------------- tidymodels 1.2.0 --
v broom 1.0.7 v rsample 1.2.1
v dials 1.3.0 v tibble 3.2.1
v dplyr 1.1.4 v tidyr 1.3.1
v infer 1.0.7 v tune 1.2.1
v modeldata 1.4.0 v workflows 1.1.4
v parsnip 1.2.1 v workflowsets 1.1.0
v purrr 1.0.2 v yardstick 1.3.1
v recipes 1.1.0
-- Conflicts --- tidymodels_conflicts() --
x purrr::discard() masks scales::discard()
x dplyr::filter() masks plotly::filter(), stats::filter()
x dplyr::lag() masks stats::lag()
x recipes::step() masks stats::step()
* Dig deeper into tidy modeling with R at https://www.tmwr.org

1.5.1 Knowledge check

Caution

Check out the Tidymodels website: https://www.tidymodels.org/. Identify which pack-
ages can be used for:

1. Efficiently splitting your data
2. Optimizing hyperparameters
3. Measuring the effectiveness of your model
4. Working with correlation matrices

1.6 Roadmap

The goal of this book is to provide effective methods and tools for uncovering relevant and
useful patterns in your data by using R’s ML stack. We begin by providing an overview of the
ML modeling process and discussing fundamental concepts that will carry through the rest of
the book. These include feature engineering, data splitting, model validation and tuning, and

25

assessing model performance. These concepts will be discussed more thoroughly in Chapters
…

TODO

Fill out roadmap as we progress

1.7 Data sets

TODO

Revisit as we progress

1.8 Exercises

1. Identify four real-life applications of supervised and unsupervised problems.

• Explain what makes these problems supervised versus unsupervised.
• For each problem identify the target variable (if applicable) and potential features.

2. Identify and contrast a regression problem with a classification problem.

• What is the target variable in each problem and why would being able to accurately
predict this target be beneficial to society?

• What are potential features and where could you collect this information?
• What is determining if the problem is a regression or a classification problem?

3. Identify three open source data sets suitable for ML (e.g., https://bit.ly/35wKu5c).

• Explain the type of ML models that could be constructed from the data (e.g.,
supervised versus unsupervised and regression versus classification).

• What are the dimensions of the data?
• Is there a code book that explains who collected the data, why it was originally

collected, and what each variable represents?
• If the data set is suitable for supervised learning, which variable(s) could be consid-

ered as a useful target? Which variable(s) could be considered as features?

4. Identify examples of misuse of ML in society. What was the ethical concern?

26

Part I

Supervised Learning

27

2 First model with Tidymodels

Much like EDA, the ML process is very iterative and heuristic-based. With minimal knowledge
of the problem or data at hand, it is difficult to know which ML method will perform best. This
is known as the no free lunch theorem for ML (Wolpert 1996). Consequently, it is common for
many ML approaches to be applied, evaluated, and modified before a final, optimal model can
be determined. Performing this process correctly provides great confidence in our outcomes.
If not, the results will be useless and, potentially, damaging 1.

Approaching ML modeling correctly means approaching it strategically by spending our data
wisely on learning and validation procedures, properly pre-processing the feature and target
variables, minimizing data leakage, tuning hyperparameters, and assessing model performance.
Many books and courses portray the modeling process as a short sprint. A better analogy
would be a marathon where many iterations of these steps are repeated before eventually
finding the final optimal model. This process is illustrated in Figure 2.1.

Figure 2.1: General predictive machine learning process.

Before introducing specific algorithms, this chapter, and the next, introduce concepts that are
fundamental to the ML modeling process and that you’ll see briskly covered in future modeling
chapters. More specifically, this chapter is designed to get you acquainted with building
predictive models using the Tidymodels construct. We’ll focus on the process of splitting
our data for improved generalizability, using Tidymodel’s parsnip package for constructing

1See https://www.fatml.org/resources/relevant-scholarship for many discussions regarding implications of
poorly applied and interpreted ML.

28

https://www.tidymodels.org/

our models, along with yardstick to measure model performance. Future chapters will build
upon these concepts by focusing on other parts of the machine learning process illustrated
above such as applying resampling procedures to give you a more robust assessment of model
performance and performing hyperparameter tuning to control the complexity of machine
learning algorithms.

2.1 Prerequisites

This chapter leverages the following packages.

Helper packages
library(tidyverse) # for data manipulation & plotting

Modeling process packages
library(modeldata) # for accessing data
library(tidymodels) # for modeling procedures

To illustrate some of the concepts, we’ll use the Ames Housing and employee attrition data
sets introduced in Section 1.7.

Ames housing data
ames <- modeldata::ames

Job attrition data
attrition <- modeldata::attrition %>%

mutate(Attrition = fct_relevel(Attrition, "Yes"))

2.2 Data splitting

A major goal of the machine learning process is to find an algorithm 𝑓 (𝑋) that most accurately
predicts future values (̂𝑌) based on a set of features (𝑋). In other words, we want an algorithm
that not only fits well to our past data, but more importantly, one that predicts a future
outcome accurately. This is called the generalizability of our algorithm. How we “spend”
our data will help us understand how well our algorithm generalizes to unseen data.

To provide an accurate understanding of the generalizability of our final optimal model, we
can split our data into training and test data sets:

• Training set: these data are used to develop feature sets, train our algorithms, tune
hyperparameters, compare models, and all of the other activities required to choose a
final model (e.g., the model we want to put into production).

29

• Test set: having chosen a final model, these data are used to estimate an unbiased
assessment of the model’s performance, which we refer to as the generalization error.

Warning

It is critical that the test set not be used prior to selecting your final model. Assessing
results on the test set prior to final model selection biases the model selection process
since the testing data will have become part of the model development process.

Figure 2.2: Splitting data into training and test sets..

Given a fixed amount of data, typical recommendations for splitting your data into training-
test splits include 60% (training)–40% (testing), 70%–30%, or 80%–20%. Generally speaking,
these are appropriate guidelines to follow; however, it is good to keep the following points in
mind:

• Spending too much in training (e.g., > 80%) won’t allow us to get a good assessment of
predictive performance. We may find a model that fits the training data very well, but
is not generalizable (overfitting).

• Sometimes too much spent in testing (> 40%) won’t allow us to get a good assessment
of model parameters.

Other factors should also influence the allocation proportions. For example, very large training
sets (e.g., 𝑛 > 100K) often result in only marginal gains compared to smaller sample sizes.
Consequently, you may use a smaller training sample to increase computation speed (e.g.,
models built on larger training sets often take longer to score new data sets in production). In
contrast, as 𝑝 ≥ 𝑛 (where 𝑝 represents the number of features), larger samples sizes are often
required to identify consistent signals in the features.

The two most common ways of splitting data include simple random sampling and strat-
ified sampling.

30

2.2.1 Simple random sampling

The simplest way to split the data into training and test sets is to take a simple random sample.
This does not control for any data attributes, such as the distribution of your response variable
(𝑌).

Note

Sampling is a random process so setting the random number generator with a common
seed allows for reproducible results. Throughout this course we’ll often use the seed 123
for reproducibility but the number itself has no special meaning.

create train/test split
set.seed(123) # for reproducibility
split <- initial_split(ames, prop = 0.7)
train <- training(split)
test <- testing(split)

dimensions of training data
dim(train)
[1] 2051 74

dimensions of test data
dim(test)
[1] 879 74

With sufficient sample size, this sampling approach will typically result in a similar distribution
of 𝑌 (e.g., Sale_Price in the ames data) between your training and test sets, as illustrated
below.

train %>%
mutate(id = 'train') %>%
bind_rows(test %>% mutate(id = 'test')) %>%
ggplot(aes(Sale_Price, color = id)) +
geom_density()

31

0e+00

2e−06

4e−06

6e−06

8e−06

0e+00 2e+05 4e+05 6e+05
Sale_Price

de
ns

ity

id

test

train

2.2.2 Stratified sampling

If we want to explicitly control the sampling so that our training and test sets have similar
𝑌 distributions, we can use stratified sampling. This is more common with classification
problems where the response variable may be severely imbalanced (e.g., 90% of observations
with response “Yes” and 10% with response “No”). However, we can also apply stratified
sampling to regression problems for data sets that have a small sample size and where the
response variable deviates strongly from normality (i.e., positively skewed like Sale_Price).
With a continuous response variable, stratified sampling will segment 𝑌 into quantiles and
randomly sample from each. Consequently, this will help ensure a balanced representation of
the response distribution in both the training and test sets.

To perform stratified sampling we simply apply the strata argument in initial_split.

set.seed(123)
split_strat <- initial_split(attrition, prop = 0.7, strata = "Attrition")
train_strat <- training(split_strat)
test_strat <- testing(split_strat)

The following illustrates that in our original employee attrition data we have an imbalanced
response (No: 84%, Yes: 16%). By enforcing stratified sampling, both our training and testing
sets have approximately equal response distributions.

32

original response distribution
table(attrition$Attrition) %>% prop.table()
##
Yes No
0.1612245 0.8387755

response distribution for training data
table(train_strat$Attrition) %>% prop.table()
##
Yes No
0.1605058 0.8394942

response distribution for test data
table(test_strat$Attrition) %>% prop.table()
##
Yes No
0.1628959 0.8371041

Tip

There is very little downside to using stratified sampling so when trying to decide if you
should use random sampling versus stratified sampling, error on the side of safety with
stratified sampling.

2.2.3 Class imbalances

Imbalanced data can have a significant impact on model predictions and performance (Kuhn
and Johnson 2013). Most often this involves classification problems where one class has a
very small proportion of observations (e.g., defaults - 5% versus nondefaults - 95%). Several
sampling methods have been developed to help remedy class imbalance and most of them can
be categorized as either up-sampling or down-sampling.

Down-sampling balances the dataset by reducing the size of the abundant class(es) to match
the frequencies in the least prevalent class. This method is used when the quantity of data is
sufficient. By keeping all samples in the rare class and randomly selecting an equal number of
samples in the abundant class, a balanced new dataset can be retrieved for further modeling.
Furthermore, the reduced sample size reduces the computation burden imposed by further
steps in the ML process.

On the contrary, up-sampling is used when the quantity of data is insufficient. It tries to
balance the dataset by increasing the size of rarer samples. Rather than getting rid of abun-

33

dant samples, new rare samples are generated by using repetition or bootstrapping (described
further in ?@sec-bootstrapping).

Note that there is no absolute advantage of one sampling method over another. Application of
these two methods depends on the use case it applies to and the data set itself. A combination
of over- and under-sampling is often successful and a common approach is known as Synthetic
Minority Over-Sampling Technique, or SMOTE (Chawla et al. 2002). This alternative sam-
pling approach, as well as others, can be implemented in R with the themis package2, which
provides additional sampling procedures on top of the rsample package.

2.2.4 Knowledge check

Caution

1. Import the penguins data from the modeldata package
2. Create a 70-30 stratified train-test split (species is the target variable).
3. What are the response variable proportions for the train and test data sets?

2.3 Building models

The R ecosystem provides a wide variety of ML algorithm implementations. This makes many
powerful algorithms available at your fingertips. Moreover, there are almost always more than
one package to perform each algorithm (e.g., there are over 20 packages for fitting random
forests). There are pros and cons to this wide selection; some implementations may be more
computationally efficient while others may be more flexible. This also has resulted in some
drawbacks as there are inconsistencies in how algorithms allow you to define the formula of
interest and how the results and predictions are supplied.

Fortunately, the tidymodels ecosystem simplifies this and, in particular, the parsnip package3

provides one common interface to train many different models supplied by other packages.
Consequently, we’ll focus on building models the tidymodels way.

To create and fit a model with parsnip we follow 3 steps:

1. Create a model type
2. Choose an “engine”
3. Fit our model

2https://themis.tidymodels.org
3https://parsnip.tidymodels.org

34

https://parsnip.tidymodels.org/index.html

Let’s illustrate by building a linear regression model. For our first model we will simply use
two features from our training data - total square feet of the home (Gr_Liv_Area) and year
built (Year_Built) to predict the sale price (Sale_Price).

Tip

We can use tidy() to get results of our model’s parameter estimates and their statistical
properties. Although the summary() function can provide this output, it gives the results
back in an unwieldy format. Go ahead, and run summary(lm_ols) to compare the results
to what we see below.
Many models have a tidy() method that provides the summary results in a more pre-
dictable and useful format (e.g. a data frame with standard column names)

lm_ols <- linear_reg() %>%
fit(Sale_Price ~ Gr_Liv_Area + Year_Built, data = train)

tidy(lm_ols)
A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -2157423. 69234. -31.2 8.09e-175
2 Gr_Liv_Area 94.4 2.12 44.4 2.54e-302
3 Year_Built 1114. 35.5 31.4 5.30e-177

Note

Don’t worry about what these parameters mean at this point; we’ll cover these details in
a future chapter.

Now, you may have noticed that we only applied two of the three steps mentioned previously:

1. Create a model type
2. Choose an “engine”
3. Fit our model

The reason is because most model objects (linear_reg() in this example) have a default
engine. linear_reg() by default uses stats::lm for ordinary least squares.4 But we can
always change the engine. For example, say you wanted to use keras to perform gradient
descent linear regression, then you could change the engine to keras but use the same code
workflow.

4lm() is the built in function provided by R to perform ordinary least squares regression. You can learn more
about it by checking out the help docs with ?lm.

35

Warning

For this code to run successfully on your end you need to have the keras and tensorflow
packages installed on your machine. Depending on your current setup this could be an
easy process or you could run into problems. If you run into problems don’t fret, this is
primarily just to illustrate how we can change engines.

lm_sgd <- linear_reg() %>%
set_engine('keras') %>%
fit(Sale_Price ~ Gr_Liv_Area + Year_Built, data = train)

Epoch 1/20
65/65 - 0s - loss: 39844155392.0000 - 396ms/epoch - 6ms/step
Epoch 2/20
65/65 - 0s - loss: 39658217472.0000 - 76ms/epoch - 1ms/step
Epoch 3/20
65/65 - 0s - loss: 39486967808.0000 - 61ms/epoch - 932us/step
Epoch 4/20
65/65 - 0s - loss: 39330422784.0000 - 60ms/epoch - 922us/step
Epoch 5/20
65/65 - 0s - loss: 39186993152.0000 - 59ms/epoch - 907us/step
Epoch 6/20
65/65 - 0s - loss: 39055552512.0000 - 60ms/epoch - 921us/step
Epoch 7/20
65/65 - 0s - loss: 38934224896.0000 - 60ms/epoch - 929us/step
Epoch 8/20
65/65 - 0s - loss: 38822408192.0000 - 60ms/epoch - 930us/step
Epoch 9/20
65/65 - 0s - loss: 38718181376.0000 - 60ms/epoch - 922us/step
Epoch 10/20
65/65 - 0s - loss: 38619480064.0000 - 60ms/epoch - 922us/step
Epoch 11/20
65/65 - 0s - loss: 38523940864.0000 - 59ms/epoch - 912us/step
Epoch 12/20
65/65 - 0s - loss: 38429220864.0000 - 59ms/epoch - 914us/step
Epoch 13/20
65/65 - 0s - loss: 38332628992.0000 - 59ms/epoch - 911us/step
Epoch 14/20
65/65 - 0s - loss: 38231027712.0000 - 60ms/epoch - 918us/step
Epoch 15/20
65/65 - 0s - loss: 38120120320.0000 - 59ms/epoch - 907us/step
Epoch 16/20
65/65 - 0s - loss: 37994668032.0000 - 62ms/epoch - 953us/step

36

Epoch 17/20
65/65 - 0s - loss: 37850050560.0000 - 58ms/epoch - 896us/step
Epoch 18/20
65/65 - 0s - loss: 37682876416.0000 - 59ms/epoch - 904us/step
Epoch 19/20
65/65 - 0s - loss: 37489717248.0000 - 58ms/epoch - 899us/step
Epoch 20/20
65/65 - 0s - loss: 37266837504.0000 - 59ms/epoch - 905us/step

Tip

When we talk about ‘engines’ we’re really just referring to packages that provide the
desired algorithm. Each model object has different engines available to use and they are
all documented. For example check out the help file for linear_reg (?linear_reg) and
you’ll see the different engines available (lm, brulee, glm, glmnet, etc.)

The beauty of this workflow is that if we want to explore different models we can simply change
the model object. For example, say we wanted to run a K-nearest neighbor model. We can
just use nearest_neighbor().

In this example we have pretty much the same code as above except we added the line of
code set_mode(). This is because most algorithms require you to specify if you are building
a regression model or a classification model.

Note

When you run this code you’ll probably get an error message saying that “This
engine requires some package installs: ‘kknn’.” This just means you need to
install.packages('kknn') and then you should be able to successfully run this code.

knn <- nearest_neighbor() %>%
set_engine("kknn") %>%
set_mode("regression") %>%
fit(Sale_Price ~ Gr_Liv_Area + Year_Built, data = train)

Tip

You can see all the different model objects available at
https://parsnip.tidymodels.org/reference/index.html

37

2.3.1 Knowledge check

Caution

1. If you haven’t already done so, create a 70-30 stratified train-test split on the
attrition data (note: Attrition is the response variable).

2. Using the logistic_reg() model object, fit a model using Age, DistanceFromHome,
and JobLevel as the features.

3. Now train a K-nearest neighbor model using the ‘kknn’ engine and be sure to set
the mode to be a classification model.

2.4 Making predictions

We have fit a few different models. Now, if we want to see our predictions we can simply apply
predict() and feed it the data set we want to make predictions on. Here, we can see the
predictions made on our training data for our ordinary least square linear regression model.

lm_ols %>% predict(train)
A tibble: 2,051 x 1
.pred
<dbl>
1 217657.
2 214276.
3 223425.
4 260324.
5 109338.
6 195106.
7 222217.
8 126175.
9 98550.
10 120811.
i 2,041 more rows

And here we get the predicted values for our KNN model.

knn %>% predict(train)
A tibble: 2,051 x 1
.pred
<dbl>
1 194967.

38

2 192240
3 174220
4 269760
5 113617.
6 173672
7 174820
8 120796
9 114560
10 121346
i 2,041 more rows

A similar process can be applied to make predictions for a classification model. For example,
the following trains a classification model that predicts whether an employee will attrit based
on their age. When we make predictions, the output is the predicted class (employee attrition
is Yes or No).

simple_logit <- logistic_reg() %>%
fit(Attrition ~ Age, data = train_strat)

simple_logit %>% predict(train_strat)
A tibble: 1,028 x 1
.pred_class
<fct>
1 No
2 No
3 No
4 No
5 No
6 No
7 No
8 No
9 No
10 No
i 1,018 more rows

In general, machine learning classifiers don’t just give binary predictions, but instead provide
some numerical value between 0 and 1 for their predictions. This number, sometimes called
the model score or confidence, is a way for the model to express their certainty about what
class the input data belongs to. In most applications, the exact probability is ignored and we
use a threshold (typically ≥ 0.5) to round the score to a binary answer, yes or no, employee
attrition or not attrition. But in some cases we do want the prediction probabilities and we
can get those by adding type = "prob" to our predict call.

39

simple_logit %>% predict(train_strat, type = "prob")
A tibble: 1,028 x 2
.pred_Yes .pred_No
<dbl> <dbl>
1 0.178 0.822
2 0.0485 0.952
3 0.204 0.796
4 0.155 0.845
5 0.162 0.838
6 0.213 0.787
7 0.195 0.805
8 0.213 0.787
9 0.0664 0.934
10 0.141 0.859
i 1,018 more rows

2.4.1 Knowledge check

Caution

1. Using the logistic regression model you trained in the previous exercise, make pre-
dictions on the attrition training data.

2. Now make predictions using the K-nearest neighbor model.

2.5 Model evaluation

Historically, the performance of statistical models was largely based on goodness-of-fit tests
and assessment of residuals. Unfortunately, misleading conclusions may follow from predictive
models that pass these kinds of assessments (Breiman et al. 2001). Today, it has become
widely accepted that a more sound approach to assessing model performance is to assess the
predictive accuracy via loss functions. Loss functions are metrics that compare the predicted
values to the actual value (the output of a loss function is often referred to as the error or
pseudo residual).

If we look at our predicted outputs for our ordinary least squares model, we can see that the
predicted home value (.pred) was $149,091 for the first observation and the actual home value
was $172,000, resulting in an error of nearly $23,000. The objective of the loss function is to
aggregate the prediction errors for all the observations into a meaningful single value metric.

40

lm_ols %>%
predict(test) %>%
bind_cols(test %>% select(Sale_Price)) %>%
mutate(prediction_error = Sale_Price - .pred)

A tibble: 879 x 3
.pred Sale_Price prediction_error
<dbl> <int> <dbl>
1 149091. 172000 22909.
2 219596. 195500 -24096.
3 195491. 212000 16509.
4 97418. 141000 43582.
5 152195. 170000 17805.
6 134471. 142000 7529.
7 119697. 115000 -4697.
8 195517. 184000 -11517.
9 141210. 88000 -53210.
10 239057. 306000 66943.
i 869 more rows

There are many loss functions to choose from when assessing the performance of a predictive
model, each providing a unique understanding of the predictive accuracy and differing between
regression and classification models. Furthermore, the way a loss function is computed will
tend to emphasize certain types of errors over others and can lead to drastic differences in
how we interpret the “optimal model”. Its important to consider the problem context when
identifying the preferred performance metric to use. And when comparing multiple models,
we need to compare them across the same metric.

2.5.1 Regression models

The most common loss functions for regression models include:

• MSE: Mean squared error is the average of the squared error (𝑀𝑆𝐸 = 1
𝑛 ∑𝑛

𝑖=1(𝑦𝑖− ̂𝑦𝑖)2)5.
The squared component results in larger errors having larger penalties. Objective:
minimize

• RMSE: Root mean squared error. This simply takes the square root of the MSE metric
(𝑅𝑀𝑆𝐸 = √ 1

𝑛 ∑𝑛
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2) so that your error is in the same units as your response

variable. If your response variable units are dollars, the units of MSE are dollars-squared,
but the RMSE will be in dollars. Objective: minimize

5This deviates slightly from the usual definition of MSE in ordinary linear regression, where we divide by 𝑛−𝑝
(to adjust for bias) as opposed to 𝑛.

41

• 𝑅2: This is a popular metric that represents the proportion of the variance in the
dependent variable that is predictable from the independent variable(s). Unfortunately,
it has several limitations. For example, two models built from two different data sets
could have the exact same RMSE but if one has less variability in the response variable
then it would have a lower 𝑅2 than the other. You should not place too much emphasis
on this metric. Objective: maximize

Let’s compute the RMSE of our OLS regression model. Remember, we want to assess our
model’s performance on the test data not the training data since that gives us a better idea
of how our model generalizes. To do so, the following:

1. Makes predictions with our test data,
2. Adds the actual Sale_Price values from our test data,
3. Computes the RMSE.

lm_ols %>%
predict(test) %>%
bind_cols(test %>% select(Sale_Price)) %>%
rmse(truth = Sale_Price, estimate = .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 45445.

The RMSE value suggests that, on average, our model mispredicts the expected sale price of
a home by about $45K.

Other common loss functions for regression models include:

• Deviance: Short for mean residual deviance. In essence, it provides a degree to which a
model explains the variation in a set of data when using maximum likelihood estimation.
Essentially this compares a saturated model (i.e. fully featured model) to an unsaturated
model (i.e. intercept only or average). If the response variable distribution is Gaussian,
then it will be approximately equal to MSE. When not, it usually gives a more useful
estimate of error. Deviance is often used with classification models. 6 Objective:
minimize

• MAE: Mean absolute error. Similar to MSE but rather than squaring, it just takes the
mean absolute difference between the actual and predicted values (𝑀𝐴𝐸 = 1

𝑛 ∑𝑛
𝑖=1(|𝑦𝑖 −

̂𝑦𝑖|)). This results in less emphasis on larger errors than MSE. Objective: minimize

6See this StackExchange thread (http://bit.ly/what-is-deviance) for a good overview of deviance for different
models and in the context of regression versus classification.

42

• RMSLE: Root mean squared logarithmic error. Similar to RMSE but it performs a
log() on the actual and predicted values prior to computing the difference (𝑅𝑀𝑆𝐿𝐸 =
√ 1

𝑛 ∑𝑛
𝑖=1(𝑙𝑜𝑔(𝑦𝑖 + 1) − 𝑙𝑜𝑔(̂𝑦𝑖 + 1))2). When your response variable has a wide range

of values, large response values with large errors can dominate the MSE/RMSE metric.
RMSLE minimizes this impact so that small response values with large errors can have
just as meaningful of an impact as large response values with large errors. Objective:
minimize

2.5.2 Classification models

When applying classification models, we often use a confusion matrix to evaluate certain
performance measures. A confusion matrix is simply a matrix that compares actual categorical
levels (or events) to the predicted categorical levels. When we predict the right level, we refer
to this as a true positive. However, if we predict a level or event that did not happen this is
called a false positive (i.e. we predicted a customer would redeem a coupon and they did not).
Alternatively, when we do not predict a level or event and it does happen that this is called a
false negative (i.e. a customer that we did not predict to redeem a coupon does).

Figure 2.3: Confusion matrix and relationships to terms such as true-positive and false-
negative.

Let’s go ahead and create a logistic regression classification model with the attrition data.

Tip

In R, using a “.” ” as in Attrition ~ . is a shortcut for saying use all available features
to predict Attrition.

logit <- logistic_reg() %>%
fit(Attrition ~ ., data = train_strat)

We can use conf_mat() to view the confusion matrix for this model. In essence, this confusion
matrix shows that our model has 34 true positive predictions, 353 true negative predictions,

43

17 false negative predictions, and 38 false predictions.

logit %>%
predict(test_strat) %>%
bind_cols(test_strat %>% select(Attrition)) %>%
conf_mat(truth = Attrition, estimate = .pred_class, dnn = c("Truth", "Prediction"))

Prediction
Truth Yes No
Yes 34 17
No 38 353

Note

Depending on the software and libraries used, you may see the prediction summaries on
the rows and the actual value summaries in the columns or vice versa. conf_mat allows
us to control that with the dnn argument to control the table dimension names.

This confusion matrix allows us to extract different levels of performance for our classification
model. For example, we can assess:

• Accuracy: Overall, how often is the classifier correct? Accuracy is the proportion of
the data that are predicted correctly. Example: 𝑇 𝑃+𝑇 𝑁

𝑡𝑜𝑡𝑎𝑙 = 34+353
442 = 0.867. Objective:

maximize

• Precision: How accurately does the classifier predict events (or positive events)? This
metric is concerned with maximizing the true positives to false positive ratio. In other
words, for the number of predictions that we made, how many were correct? This
characterizes the “purity in retrieval performance” (Buckland and Gey 1994). Example:

𝑇 𝑃
𝑇 𝑃+𝐹𝑃 = 34

34+17 = 0.667. Objective: maximize

• Sensitivity (aka recall): How accurately does the classifier classify actual events? The
sensitivity is defined as the proportion of positive results out of the number of samples
which were actually positive. This metric is concerned with maximizing the true positives
to false negatives ratio. In other words, for the events that occurred, how many did we
predict? Example: 𝑇 𝑃

𝑇 𝑃+𝐹𝑁 = 34
34+38 = 0.472. Objective: maximize

• Specificity: How accurately does the classifier classify actual non-events? The speci-
ficity measures the proportion of negatives that are correctly identified as negatives.
Example: 𝑇 𝑁

𝑇 𝑁+𝐹𝑃 = 353
353+17 = 0.954. Objective: maximize

predict_and_actuals <- logit %>%
predict(test_strat) %>%
bind_cols(test_strat %>% select(Attrition))

44

accuracy
predict_and_actuals %>% accuracy(truth = Attrition, estimate = .pred_class)
A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 accuracy binary 0.876

precision
predict_and_actuals %>% precision(truth = Attrition, estimate = .pred_class)
A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 precision binary 0.667

recall
predict_and_actuals %>% sensitivity(truth = Attrition, estimate = .pred_class)
A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 sensitivity binary 0.472

specificity
predict_and_actuals %>% specificity(truth = Attrition, estimate = .pred_class)
A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 specificity binary 0.954

Our results show that our model has high accuracy, which is mainly driven by our model’s
ability to predict non-events (employees that do not attrit) accurately. However, our model
does not do a very good job of predicting positive events (employees that do attrit), represented
by the low precision and sensitivity values.

A good binary classifier will have high precision and sensitivity. This means the classifier does
well when it predicts an event will and will not occur, which minimizes false positives and
false negatives. To capture this balance, we often use a receiver operator curve (ROC) that
plots the sensitivity on the y-axis and 1-specificity on the x-axis. A line that is diagonal from
the lower left corner to the upper right corner represents a random guess. The higher the line
is in the upper left-hand corner, the better.

To plot the ROC curve we actually need to predict the probability of our classification model’s
prediction. We then pass the predicted probabilities for the class we care about (here we

45

No bette
r th

an guessi
ngOk

Bette
r

Best

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Figure 2.4: ROC curve.

are concerned with the probability of employees actually attriting) and the truth values to
roc_curve.

logit %>%
predict(test_strat, type = "prob") %>%
bind_cols(test_strat %>% select(Attrition)) %>%
roc_curve(truth = Attrition, .pred_Yes) %>%
autoplot()

46

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Another common metric is the area under the curve (AUC). Generally, an ROC AUC value
is between 0.5 and 1, with 1 being a perfect prediction model. If your value is between 0 and
0.5, then this implies that you have meaningful information in your model, but it is being
applied incorrectly because doing the opposite of what the model predicts would result in an
AUC > 0.5. The benefit of the AUC metric is that it gives us a single metric value that
incorporates both sensitivity and specificity of our model. The higher the AUC value, the
more balanced our model is.

logit %>%
predict(test_strat, type = "prob") %>%
bind_cols(test_strat %>% select(Attrition)) %>%
roc_auc(truth = Attrition, .pred_Yes)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 roc_auc binary 0.835

47

2.5.3 Knowledge check

Caution

1. Compute and compare the 𝑅2 of the lm_ols and knn models trained in Section 2.3.
2. Now compute the accuracy rate and AUC of the simple_logit model trained in

Section 2.3 and compare it to the logit model trained in Section 2.5.2.

2.6 Exercises

Caution

For this exercise use the Chicago ridership data set provided by the modeldata library.7.
This data set is derived from Kuhn and Johnson (2019) and contains an abbreviated
training set for modeling the number of people (in thousands) who enter the Clark and
Lake L station. The objective is to use the available features (i.e. temp (temparature),
wind (wind speed), Bulls_Home (is there a Chicago Bulls game at home), etc. to predict
the the number of people (in thousands) represented by the ridership column.
Modeling tasks:

1. Load the Chicago ridership data set and remove the date column.
2. Split the data into a training set and test set using a 70-30% split.
3. How many observations are in the training set and test set?
4. Compare the distribution of ridership between the training set and test set.
5. Fit a linear regression model using all available features to predict ridership and

compute the RMSE on the test data.
6. Fit a K-nearest neighbor model that uses all available features to predict ridership

and compute the RMSE on the test data.
7. How do these models compare?

7See more details at https://modeldata.tidymodels.org/reference/Chicago.html

48

3 Linear regression

Linear regression, a staple of classical statistical modeling, is one of the simplest algorithms
for doing supervised learning. Though it may seem somewhat dull compared to some of
the more modern statistical learning approaches described in later chapters, linear regression
is still a useful and widely applied statistical learning method. Moreover, it serves as a good
starting point for more advanced approaches; as we will see in later chapters, many of the more
sophisticated statistical learning approaches can be seen as generalizations to or extensions of
ordinary linear regression. Consequently, it is important to have a good understanding of
linear regression before studying more complex learning methods.

Note

This chapter introduces linear regression with an emphasis on prediction, rather than
inference.

1. Modeling for inference: When you want to explicitly describe and quantify the
relationship between the outcome variable 𝑌 and a set of explanatory variables 𝑋,
determine the significance of any relationships, have measures summarizing these
relationships, and possibly identify any causal relationships between the variables.

2. Modeling for prediction: When you want to predict an outcome variable 𝑌 based
on the information contained in a set of predictor variables 𝑋. Unlike modeling
for explanation, however, you don’t care so much about understanding how all the
variables relate and interact with one another, but rather only whether you can
make good predictions about 𝑌 using the information in 𝑋.

An excellent and comprehensive overview of linear regression is provided in Kutner et
al. (2005). See Faraway (2016) for a discussion of linear regression in R and Lipovetsky
(2020) for a great introduction to linear regression for inference and explanation rather
than prediction.

3.1 Prerequisites

This chapter leverages the following packages:

49

Data wrangling & visualization packages
library(tidyverse)

Modeling packages
library(tidymodels)

We’ll also continue working with the Ames housing data:

stratified sampling with the rsample package
ames <- AmesHousing::make_ames()

set.seed(123)
split <- initial_split(ames, prop = 0.7, strata = "Sale_Price")
ames_train <- training(split)
ames_test <- testing(split)

3.2 Correlation

Correlation is a single-number statistic that measures the extent that two variables are related
(“co-related”) to one another. For example, say we want to understand the relationship be-
tween the total above ground living space of a home (Gr_Liv_Area) and the home’s sale price
(Sale_Price).

Looking at the following scatter plot we can see that some relationship does exist. It appears
that as Gr_Liv_Area increases the Sale_Price of a home increases as well.

ggplot(ames_train, aes(Gr_Liv_Area, Sale_Price)) +
geom_point(size = 1.5, alpha = .25)

50

0e+00

2e+05

4e+05

6e+05

1000 2000 3000 4000 5000
Gr_Liv_Area

S
al

e_
P

ric
e

Correlation allows us to quantify this relationship. We can compute the correlation with the
following:

ames_train %>%
summarize(correlation = cor(Gr_Liv_Area, Sale_Price))

A tibble: 1 x 1
correlation
<dbl>
1 0.708

The value of a correlation coefficient will always vary between +1 and -1. In our example,
the correlation coefficient is 0.71. When the value of the correlation coefficient is +1 or -1,
then it is said to be a perfect degree of association between the two variables (near +1 implies
a strong positive association and near -1 implies a strong negative association). This simply
means that when there is a one unit change in one variable we will always see a certain change
change in units in the other variable. As the correlation coefficient nears 0, the relationship
between the two variables weakens with a near 0 value implying no association between the
two variables (a one unit change in one variable has no relationship to any level of change in
the other variable).

So, in our case we could say we have a moderate positive correlation between Gr_Liv_Area
and Sale_Price. Let’s look at another relationship. In the following we look at the rela-
tionship between the unfinished basement square footage of homes (Bsmt_Unf_SF) and the
Sale_Price.

51

ggplot(ames_train, aes(Bsmt_Unf_SF, Sale_Price)) +
geom_point(size = 1.5, alpha = .25)

0e+00

2e+05

4e+05

6e+05

0 500 1000 1500 2000
Bsmt_Unf_SF

S
al

e_
P

ric
e

In this example, we don’t see much of a relationship. Basically, as Bsmt_Unf_SF gets larger or
smaller, we really don’t see a strong pattern with Sale_Price.

If we look at the correlation for this relationship, we see that the correlation coefficient is much
closer to zero than to 1. This confirms our visual assessment that there does not seem to be
much of a relationship between these two variables.

ames_train %>%
summarize(correlation = cor(Bsmt_Unf_SF, Sale_Price))

A tibble: 1 x 1
correlation
<dbl>
1 0.186

Although a useful measure, correlation can be hard to imagine exactly what the association
is between two variables based on this single statistic. Moreover, its important to realize that
correlation typically assumes a linear relationship between two variables.

For example, let’s check out the anscombe data, which is a built-in data set provided in R. If
we look at each x and y relationship visually, we can see significant differences:

52

p1 <- qplot(x = x1, y = y1, data = anscombe)
p2 <- qplot(x = x2, y = y2, data = anscombe)
p3 <- qplot(x = x3, y = y3, data = anscombe)
p4 <- qplot(x = x4, y = y4, data = anscombe)

gridExtra::grid.arrange(p1, p2, p3, p4, ncol = 2)

4

6

8

10

6 9 12
x1

y1

4

6

8

6 9 12
x2

y2

7

9

11

13

6 9 12
x3

y3

5

7

9

11

7.5 10.0 12.5 15.0 17.5
x4

y4

However, if we compute the correlation between each of these relationships we see that they
all have nearly equal correlation coefficients!

Warning

Never take a correlation coefficient at face value! You should always compare the visual
relationship with the computed correlation value.

53

anscombe %>%
summarize(

corr_x1_y1 = cor(x1, y1),
corr_x2_y2 = cor(x2, y2),
corr_x3_y3 = cor(x3, y3),
corr_x4_y4 = cor(x4, y4)
)

corr_x1_y1 corr_x2_y2 corr_x3_y3 corr_x4_y4
1 0.8164205 0.8162365 0.8162867 0.8165214

There are actually several different ways to measure correlation. The most common, and the
one we’ve been using here, is Pearson’s correlation, represented by 𝑟𝑥𝑦. Given paired data
{(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} consisting of 𝑛 pairs, 𝑟𝑥𝑦 is defined as

𝑟𝑋𝑌 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − ̄𝑌)

√∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2√∑𝑛

𝑖=1(𝑌𝑖 − ̄𝑌)2

where 𝑋𝑖 and 𝑌𝑖 represent the individual sample points and 𝑋̄ and ̄𝑌 are the sample mean.
There are alternative methods that allow us to loosen some assumptions such as assuming a
linear relationship; however, in the next section we’ll see how simple linear regression fully
characterizes this Pearson’s correlation.

3.2.1 Knowledge check

Caution

1. Interpreting coefficients that are not close to the extreme values of -1, 0, and 1
can be somewhat subjective. To help develop your sense of correlation coefficients,
we suggest you play the 80s-style video game called, “Guess the Correlation”, at
http://guessthecorrelation.com/

2. Using the ames_train data, visualize the relationship between Year_Built and
Sale_Price.

3. Guess what the correlation is between these two variables?
4. Now compute the correlation between these two variables.

3.3 Simple linear regression

As discussed in the last section, correlation is often used to quantify the strength of the linear
association between two continuous variables. However, this statistic alone does not provide

54

us with a lot of actionable insights. But we can build on the concept of correlation to provide
us with more useful information.

In this section, we seek to fully characterize the linear relationship we measured with correlation
using a method called simple linear regression (SLR).

3.3.1 Best fit line

Let’s go back to our plot illustrating the relationship between Gr_Liv_Area and Sale_Price.
We can characterize this relationship with a linear line that we consider is the “best-fitting”
line (we’ll define “best-fitting” in a little bit). We do this by adding overplotting with
geom_smooth(method = "lm", se = FALSE)

ggplot(ames_train, aes(Gr_Liv_Area, Sale_Price)) +
geom_point(size = 1.5, alpha = .25) +
geom_smooth(method = "lm", se = FALSE)

0e+00

2e+05

4e+05

6e+05

1000 2000 3000 4000 5000
Gr_Liv_Area

S
al

e_
P

ric
e

The line in the above plot is called a “regression line.” The regression line is a visual summary
of the linear relationship between two numerical variables, in our case the outcome variable
Sale_Price and the explanatory variable Gr_Liv_Area. The positive slope of the blue line
is consistent with our earlier observed correlation coefficient of 0.71 suggesting that there is a
positive relationship between these two variables.

55

Mathematically, we can express this regression line as

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖, for 𝑖 = 1, 2, … , 𝑛, (3.1)

where 𝑌𝑖 represents the i-th response value, 𝑋𝑖 represents the i-th feature value, 𝛽0 and 𝛽1
are fixed, but unknown constants (commonly referred to as coefficients or parameters) that
represent the intercept and slope of the regression line, respectively, and 𝜖𝑖 represents noise
or random error. In this chapter, we’ll assume that the errors are normally distributed with
mean zero and constant variance 𝜎2, denoted 𝑖𝑖𝑑∼ (0, 𝜎2). Since the random errors are centered
around zero (i.e., 𝐸 (𝜖) = 0), linear regression is really a problem of estimating a conditional
mean:

𝐸 (𝑌𝑖|𝑋𝑖) = 𝛽0 + 𝛽1𝑋𝑖.

For brevity, we often drop the conditional piece and write 𝐸 (𝑌 |𝑋) = 𝐸 (𝑌). Consequently,
the interpretation of the coefficients is in terms of the average, or mean response. For example,
the intercept 𝛽0 represents the average response value when 𝑋 = 0 (it is often not meaningful
or of interest and is sometimes referred to as a bias term). The slope 𝛽1 represents the increase
in the average response per one-unit increase in 𝑋 (i.e., it is a rate of change).

So what are the coefficients of our best fit line that characterizes the relationship between
Gr_Liv_Area and Sale_Price? We can get that by fitting an SLR model where Sale_Price
is our response variable and Gr_Liv_Area is our single predictor variable.

Once our model is fit we can extract our fitted model results with tidy():

model1 <- linear_reg() %>%
fit(Sale_Price ~ Gr_Liv_Area, data = ames_train)

tidy(model1)
A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 15938. 3852. 4.14 3.65e- 5
2 Gr_Liv_Area 110. 2.42 45.3 5.17e-311

The estimated coefficients from our model are 𝑏0 = 15938.17 and 𝑏1 = 109.67. To interpret,
we estimate that the mean selling price increases by 109.67 for each additional one square foot
of above ground living space.

With these coefficients, we can look at our scatter plot again (this time with the x & y axes
formatted) and compare the characterization of our regression line with the coefficients. This

56

simple description of the relationship between the sale price and square footage using a single
number (i.e., the slope) is what makes linear regression such an intuitive and popular modeling
tool.

ggplot(ames_train, aes(Gr_Liv_Area, Sale_Price)) +
geom_point(size = 1.5, alpha = .25) +
geom_smooth(method = "lm", se = FALSE) +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::dollar)

$0

$200,000

$400,000

$600,000

1,000 2,000 3,000 4,000 5,000
Gr_Liv_Area

S
al

e_
P

ric
e

3.3.2 Estimation

This is great but you may still be asking how we are estimating the coefficients? Ideally, we
want estimates of 𝑏0 and 𝑏1 that give us the “best fitting” line represented in the previous
plot. But what is meant by “best fitting”? The most common approach is to use the method
of least squares (LS) estimation; this form of linear regression is often referred to as ordinary
least squares (OLS) regression. There are multiple ways to measure “best fitting”, but the LS
criterion finds the “best fitting” line by minimizing the residual sum of squares (RSS).

Before we mathematically define RSS, let’s first define what a residual is. Let’s look at a single
home. This home has 3,608 square feet of living space and sold for $475,000. In other words,
𝑥 = 3608 and 𝑦 = 475000.

57

A tibble: 1 x 2
Gr_Liv_Area Sale_Price
<int> <int>
1 3608 475000

Based on our linear regression model (or the intercept and slope we identified from our model)
our best fit line estimates that this house’s sale price is

𝑌𝑖 = 𝑏0 + 𝑏1 × 𝑋𝑖 = 15938.1733 + 109.6675 × 3608 = 411618.5

We can visualize this in our plot where we have the actual Sale_Price (orange) and the
estimated Sale_Price based on our fitted line. The difference between these two values
(𝑌𝑖 − 𝑌𝑖 = 475000 − 411618.5 = 63381.5) is what we call our residual. It is considered the error
for this observation, which we can visualize with the red line.

$0

$200,000

$400,000

$600,000

1,000 2,000 3,000 4,000 5,000
Gr_Liv_Area

S
al

e_
P

ric
e

Now, if we look across all our data points you will see that each one has a residual associated
with it. In the right plot, the vertical lines represent the individual residuals/errors associated
with each observation.

58

$0

$200,000

$400,000

$600,000

1000 2000 3000 4000 5000
Gr_Liv_Area

S
al

e_
P

ric
e

Fitted regression line

$0

$200,000

$400,000

$600,000

1000 2000 3000 4000 5000
Gr_Liv_Area

S
al

e_
P

ric
e

Fitted regression line (with residuals)

Figure 3.1: The least squares fit from regressing sale price on living space for the the Ames
housing data. Left: Fitted regression line. Right: Fitted regression line with
vertical grey bars representing the residuals.

The OLS criterion identifies the “best fitting” line that minimizes the sum of squares of these
residuals. Mathematically, this is computed by taking the sum of the squared residuals (or as
stated before the residual sum of squares –> “RSS”).

𝑅𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖)
2

where 𝑌𝑖 and 𝑌𝑖 just mean the actual and predicted response values for the ith observation.

One drawback of the LS procedure in linear regression is that it only provides estimates of
the coefficients; it does not provide an estimate of the error variance 𝜎2! LS also makes no
assumptions about the random errors. These assumptions are important for inference and
in estimating the error variance which we’re assuming is a constant value 𝜎2. One way to
estimate 𝜎2 (which is required for characterizing the variability of our fitted model), is to use
the method of maximum likelihood (ML) estimation (see Kutner et al. (2005) Section 1.7 for
details). The ML procedure requires that we assume a particular distribution for the random
errors. Most often, we assume the errors to be normally distributed. In practice, under the
usual assumptions stated above, an unbiased estimate of the error variance is given as the sum
of the squared residuals divided by 𝑛 − 𝑝 (where 𝑝 is the number of regression coefficients or
parameters in the model):

𝜎̂2 = 1
𝑛 − 𝑝

𝑛
∑
𝑖=1

𝑟2
𝑖 , (3.2)

59

where 𝑟𝑖 = (𝑌𝑖 − 𝑌𝑖) is referred to as the 𝑖th residual (i.e., the difference between the 𝑖th
observed and predicted response value). The quantity 𝜎̂2 is also referred to as the mean square
error (MSE) and its square root is denoted RMSE (see Section Section 2.5.1 for discussion on
these metrics).

For our SLR model, we can extract the RMSE metric and others using the glance() func-
tion:

glance(model1) %>%
select(sigma) %>%
mutate(RMSE = sigma, MSE = RMSE^2)

A tibble: 1 x 3
sigma RMSE MSE
<dbl> <dbl> <dbl>
1 56788. 56788. 3224869786.

Note

Typically, these error metrics are computed on a separate validation set discussed in
Section Section 2.5 or using cross-validation as will be discussed in a future chapter;
however, they can also be computed on the same training data the model was trained on
as illustrated here.

3.3.3 Inference

Let’s go back to our model1 results that show the 𝑏0 and 𝑏1 coefficient values:

tidy(model1)
A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 15938. 3852. 4.14 3.65e- 5
2 Gr_Liv_Area 110. 2.42 45.3 5.17e-311

Note that we call these coefficient values “estimates.” Due to various reasons we should always
assume that there is some variability in our estimated coefficient values. The variability of an
estimate is often measured by its standard error (SE)—the square root of its variance. Since
we assume that the errors in the linear regression model are 𝑖𝑖𝑑∼ (0, 𝜎2), then simple expressions
for the SEs of the estimated coefficients exist and were computed for us and displayed in the
column labeled std.error in the output from tidy().

60

From this, we can also derive simple 𝑡-tests to understand if the individual coefficients are
statistically significant from zero. The t-statistics for such a test are nothing more than the
estimated coefficients divided by their corresponding estimated standard errors (i.e., in the
output from tidy(), t value (aka statistic) = estimate / std.error). The reported
t-statistics measure the number of standard deviations each coefficient is away from 0. Thus,
large t-statistics (greater than two in absolute value, say) roughly indicate statistical signifi-
cance at the 𝛼 = 0.05 level. The p-values for these tests are also reported by tidy() in the
column labeled p.value.

Note

This may seem quite complicated but don’t worry, R will do the heavy lifting for us.
Just realize we can use these additional statistics provided in our model summary to tell
us if the predictor variable (Gr_Liv_Area in our example) has a statistically significant
relationship with our response variable.

When the p.value for a given coefficient is quite small (i.e. p.value < 0.005), that is a good
indication that the estimate for that coefficient is statistically different than zero. For example,
the p.value for the Gr_Liv_Area coefficient is 5.17e-311 (basically zero). This means that the
estimated coefficient value of 109.6675 is statistically different than zero.

Let’s look at this from another perspective. Under the same assumptions, we can also derive
confidence intervals for the coefficients. The formula for the traditional 100 (1 − 𝛼)% confidence
interval for 𝛽𝑗 is

̂𝛽𝑗 ± 𝑡1−𝛼/2,𝑛−𝑝𝑆𝐸 (̂𝛽𝑗) . (3.3)

In R, we can construct such (one-at-a-time) confidence intervals for each coefficient using
confint(). For example, a 95% confidence intervals for the coefficients in our SLR example
can be computed using

confint(model1$fit, level = 0.95)
2.5 % 97.5 %
(Intercept) 8384.213 23492.1336
Gr_Liv_Area 104.920 114.4149

To interpret, we estimate with 95% confidence that the mean selling price increases between
104.92 and 114.41 for each additional one square foot of above ground living space. We can
also conclude that the slope 𝑏1 is significantly different from zero (or any other pre-specified
value not included in the interval) at the 𝛼 = 0.05 level (𝛼 = 0.05 because we just take 1 -
confidence level we are computing so 1 − 0.95 = 0.05).

61

Note

Most statistical software, including R, will include estimated standard errors, t-statistics,
etc. as part of its regression output. However, it is important to remember that such
quantities depend on three major assumptions of the linear regression model:

1. Independent observations
2. The random errors have mean zero, and constant variance
3. The random errors are normally distributed

If any or all of these assumptions are violated, then remedial measures need to be taken.
For instance, weighted least squares (and other procedures) can be used when the constant
variance assumption is violated. Transformations (of both the response and features) can
also help to correct departures from these assumptions. The residuals are extremely useful
in helping to identify how parametric models depart from such assumptions.

3.3.4 Making predictions

We’ve created a simple linear regression model to describe the relationship between
Gr_Liv_Area and Sale_Price. As we saw in the last chapter, we can make predictions with
this model.

model1 %>%
predict(ames_train)

A tibble: 2,049 x 1
.pred
<dbl>
1 135695.
2 135695.
3 107620.
4 98408.
5 126922.
6 224526.
7 114639.
8 129992.
9 205444.
10 132515.
i 2,039 more rows

And we can always add these predictions back to our training data if we want to look at how
the predicted values differ from the actual values.

62

model1 %>%
predict(ames_train) %>%
bind_cols(ames_train) %>%
select(Gr_Liv_Area, Sale_Price, .pred)

A tibble: 2,049 x 3
Gr_Liv_Area Sale_Price .pred
<int> <int> <dbl>
1 1092 105500 135695.
2 1092 88000 135695.
3 836 120000 107620.
4 752 125000 98408.
5 1012 67500 126922.
6 1902 112000 224526.
7 900 122000 114639.
8 1040 127000 129992.
9 1728 84900 205444.
10 1063 128000 132515.
i 2,039 more rows

3.3.5 Assessing model accuracy

This allows us to assess the accuracy of our model. Recall from the last module that for
regression models we often use mean squared error (MSE) and root mean squared error (RMSE)
to quantify the accuracy of our model. These two values are directly correlated to the RSS we
discussed above, which determines the best fit line. Let’s illustrate.

3.3.5.1 Training data accuracy

Recall that the residuals are the differences between the actual 𝑦 and the estimated ̂𝑦 based
on the best fit line.

residuals <- model1 %>%
predict(ames_train) %>%
bind_cols(ames_train) %>%
select(Gr_Liv_Area, Sale_Price, .pred) %>%
mutate(residual = Sale_Price - .pred)

head(residuals, 5)
A tibble: 5 x 4
Gr_Liv_Area Sale_Price .pred residual

63

<int> <int> <dbl> <dbl>
1 1092 105500 135695. -30195.
2 1092 88000 135695. -47695.
3 836 120000 107620. 12380.
4 752 125000 98408. 26592.
5 1012 67500 126922. -59422.

The RSS squares these values, sums them, and multiples by 1 divided by the number of
observations minus the number of coefficients in our model, which is 2.

residuals %>%
mutate(squared_residuals = residual^2) %>%
summarize(sum_of_squared_residuals = sum(squared_residuals), n = n()) %>%
mutate(RSS = (1 / (n-2)) * sum_of_squared_residuals)

A tibble: 1 x 3
sum_of_squared_residuals n RSS
<dbl> <int> <dbl>
1 6.60e12 2049 3224869786.

Note

Why do we square the residuals? So that both positive and negative deviations of the
same amount are treated equally. While taking the absolute value of the residuals would
also treat both positive and negative deviations of the same amount equally, squaring
the residuals is used for reasons related to calculus: taking derivatives and minimizing
functions.

However, when expressing the performance of a model we rarely state the RSS. Instead it
is more common to state the average of the squared error, or the MSE as discussed here.
Unfortunately, both the RSS and MSE are not very intuitive because the units the metrics
are expressed in do have much meaning. So, we usually use the RMSE metric, which simply
takes the square root of the MSE metric so that your error metric is in the same units as your
response variable.

We can manually compute this with the following, which tells us that on average, our linear
regression model mispredicts the expected sale price of a home by about $56,760.

residuals %>%
mutate(squared_residuals = residual^2) %>%
summarize(

MSE = mean(squared_residuals),
RMSE = sqrt(MSE)

64

https://bradleyboehmke.github.io/uc-bana-4080/lesson-1b-first-model-with-tidymodels.html#regression-models

)
A tibble: 1 x 2
MSE RMSE
<dbl> <dbl>
1 3221722037. 56760.

We could also compute this using the rmse() function we saw in the last module:

model1 %>%
predict(ames_train) %>%
bind_cols(ames_train) %>%
rmse(truth = Sale_Price, estimate = .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 56760.

3.3.5.2 Test data accuracy

Recall that a major goal of the machine learning process is to find a model that most accurately
predicts future values based on a set of features. In other words, we want an algorithm that
not only fits well to our past data, but more importantly, one that predicts a future outcome
accurately. In the last chapter we called this our generalization error.

So, ultimately, we want to understand how well our model will generalize to unseen data. To
do this we need to compute the RMSE of our model on our test set.

Note

Here, we see that our test RMSE is right around the same as our training data. As we’ll
see in later chapters, this is not always the case.

model1 %>%
predict(ames_test) %>%
bind_cols(ames_test) %>%
rmse(truth = Sale_Price, estimate = .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 55942.

65

3.3.6 Knowledge check

Caution

Let’s revisit the relationship between Year_Built and Sale_Price. Using the
ames_train data:

1. Visualize the relationship between these two variables.
2. Compute their correlation.
3. Create a simple linear regression model where Sale_Price is a function of

Year_Built.
4. Interpret the coefficient for Year_Built.
5. What is the 95% confidence interval for this coefficient and can we confidently say

it is statistically different than zero?
6. Using this model, make predictions using the test data. What is the predicted value

for the first home in the test data?
7. Compute and interpret the generalization RMSE for this model. How does this

model compare to the model based on Gr_Liv_Area?

3.4 Multiple linear regression

TBD

3.5 Exercises

Caution

We’ll continue working with the Chicago ridership data we used for the exercises in the
previous chapter.

1. Load the Chicago ridership data set and split the data into a training set and test
set using a 70-30% split.

2. Using the training data

1. Visualize the relationship between the Ashland and ridership variables.
2. Compute the correlation between these two features.
3. Create a simple linear regression model with ridership as the response vari-

able and Ashland as the feature variable.
4. Interpret the feature’s coefficient.
5. What is the model’s generalization error?

66

3. Now pick one of the weather_ feature variables and repeat the process in #2.

67

References

Breiman, Leo et al. 2001. “Statistical Modeling: The Two Cultures (with Comments and a
Rejoinder by the Author).” Statistical Science 16 (3): 199–231.

Buckland, Michael, and Fredric Gey. 1994. “The Relationship Between Recall and Precision.”
Journal of the American Society for Information Science 45 (1): 12–19.

Chawla, Nitesh V, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. 2002.
“SMOTE: Synthetic Minority over-Sampling Technique.” Journal of Artificial Intelligence
Research 16: 321–57.

Efron, Bradley, and Trevor Hastie. 2016. Computer Age Statistical Inference. Vol. 5. Cam-
bridge University Press.

Faraway, Julian J. 2016. Linear Models with r. Chapman; Hall/CRC.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Vol. 1. MIT

Press Cambridge.
Harrell, Frank. 2017. “Classification Vs. Prediction.” 2017. https://www.fharrell.com/post/

classification/.
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Vol. 2. Springer Science+ Business
Media.

Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive Modeling. Vol. 26. Springer.
———. 2019. Feature Engineering and Selection: A Practical Approach for Predictive Models.

Chapman; Hall/CRC.
Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied Linear Statistical Models.

5th ed. McGraw Hill.
Lipovetsky, Stan. 2020. Taylor & Francis.
Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin A. Riedmiller. 2013. “Playing Atari with Deep Reinforcement Learn-
ing.” CoRR abs/1312.5602. http://arxiv.org/abs/1312.5602.

Powell, Warren B. 2021. “From Reinforcement Learning to Optimal Control: A Unified Frame-
work for Sequential Decisions.” In Handbook of Reinforcement Learning and Control, 29–74.
Springer.

Sutton, Richard S, and Andrew G Barto. 2018. Reinforcement Learning: An Introduction.
MIT press.

Szepesvári, Csaba. 2022. Algorithms for Reinforcement Learning. Springer Nature.
Wickham, Hadley. 2014. Advanced r. CRC Press.
Wickham, Hadley, and Garrett Grolemund. 2016. R for Data Science: Import, Tidy, Trans-

form, Visualize, and Model Data. O’Reilly Media, Inc.

68

https://www.fharrell.com/post/classification/
https://www.fharrell.com/post/classification/
http://arxiv.org/abs/1312.5602

Wolpert, David H. 1996. “The Lack of a Priori Distinctions Between Learning Algorithms.”
Neural Computation 8 (7): 1341–90.

69

	Welcome
	Who should read this
	Why R
	Conventions used in this book
	Additional resources
	Acknowledgments
	Software information

	Preface to the second edition
	Introduction to Machine Learning
	Supervised learning
	Regression problems
	Classification problems
	Knowledge check

	Unsupervised learning
	Knowledge check

	Reinforcement learning
	Generative AI
	Machine learning in
	Knowledge check

	Roadmap
	Data sets
	Exercises

	Supervised Learning
	First model with Tidymodels
	Prerequisites
	Data splitting
	Simple random sampling
	Stratified sampling
	Class imbalances
	Knowledge check

	Building models
	Knowledge check

	Making predictions
	Knowledge check

	Model evaluation
	Regression models
	Classification models
	Knowledge check

	Exercises

	Linear regression
	Prerequisites
	Correlation
	Knowledge check

	Simple linear regression
	Best fit line
	Estimation
	Inference
	Making predictions
	Assessing model accuracy
	Knowledge check

	Multiple linear regression
	Exercises

	References

