1. Identify four real-life applications of supervised and unsupervised problems.
    • Explain what makes these problems supervised versus unsupervised.
    • For each problem identify the target variable (if applicable) and potential features.
  2. Identify and contrast a regression problem with a classification problem.
    • What is the target variable in each problem and why would being able to accurately predict this target be beneficial to society?
    • What are potential features and where could you collect this information?
    • What is determining if the problem is a regression or a classification problem?
  3. Identify three open source datasets suitable for machine learning (e.g., https://bit.ly/35wKu5c).
    • Explain the type of machine learning models that could be constructed from the data (e.g., supervised versus unsupervised and regression versus classification).
    • What are the dimensions of the data?
    • Is there a code book that explains who collected the data, why it was originally collected, and what each variable represents?
    • If the dataset is suitable for supervised learning, which variable(s) could be considered as a useful target? Which variable(s) could be considered as features?
  4. Identify examples of misuse of machine learning in society. What was the ethical concern?
LS0tCnRpdGxlOiAiQ2hhcHRlciAxIEV4ZXJjaXNlcyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKMS4gSWRlbnRpZnkgZm91ciByZWFsLWxpZmUgYXBwbGljYXRpb25zIG9mIHN1cGVydmlzZWQgYW5kIHVuc3VwZXJ2aXNlZCBwcm9ibGVtcy4KICAgLSBFeHBsYWluIHdoYXQgbWFrZXMgdGhlc2UgcHJvYmxlbXMgc3VwZXJ2aXNlZCB2ZXJzdXMgdW5zdXBlcnZpc2VkLgogICAtIEZvciBlYWNoIHByb2JsZW0gaWRlbnRpZnkgdGhlIHRhcmdldCB2YXJpYWJsZSAoaWYgYXBwbGljYWJsZSkgYW5kIHBvdGVudGlhbAogICAgIGZlYXR1cmVzLgoKMi4gSWRlbnRpZnkgYW5kIGNvbnRyYXN0IGEgcmVncmVzc2lvbiBwcm9ibGVtIHdpdGggYSBjbGFzc2lmaWNhdGlvbiBwcm9ibGVtLgogICAtIFdoYXQgaXMgdGhlIHRhcmdldCB2YXJpYWJsZSBpbiBlYWNoIHByb2JsZW0gYW5kIHdoeSB3b3VsZCBiZWluZyBhYmxlIHRvCiAgICAgYWNjdXJhdGVseSBwcmVkaWN0IHRoaXMgdGFyZ2V0IGJlIGJlbmVmaWNpYWwgdG8gc29jaWV0eT8KICAgLSBXaGF0IGFyZSBwb3RlbnRpYWwgZmVhdHVyZXMgYW5kIHdoZXJlIGNvdWxkIHlvdSBjb2xsZWN0IHRoaXMgaW5mb3JtYXRpb24/CiAgIC0gV2hhdCBpcyBkZXRlcm1pbmluZyBpZiB0aGUgcHJvYmxlbSBpcyBhIHJlZ3Jlc3Npb24gb3IgYSBjbGFzc2lmaWNhdGlvbgogICAgIHByb2JsZW0/CgozLiBJZGVudGlmeSB0aHJlZSBvcGVuIHNvdXJjZSBkYXRhc2V0cyBzdWl0YWJsZSBmb3IgbWFjaGluZSBsZWFybmluZyAoZS5nLiwKICAgaHR0cHM6Ly9iaXQubHkvMzV3S3U1YykuCiAgIC0gRXhwbGFpbiB0aGUgdHlwZSBvZiBtYWNoaW5lIGxlYXJuaW5nIG1vZGVscyB0aGF0IGNvdWxkIGJlIGNvbnN0cnVjdGVkIGZyb20KICAgICB0aGUgZGF0YSAoZS5nLiwgc3VwZXJ2aXNlZCB2ZXJzdXMgdW5zdXBlcnZpc2VkIGFuZCByZWdyZXNzaW9uIHZlcnN1cwogICAgIGNsYXNzaWZpY2F0aW9uKS4KICAgLSBXaGF0IGFyZSB0aGUgZGltZW5zaW9ucyBvZiB0aGUgZGF0YT8KICAgLSBJcyB0aGVyZSBhIGNvZGUgYm9vayB0aGF0IGV4cGxhaW5zIHdobyBjb2xsZWN0ZWQgdGhlIGRhdGEsIHdoeSBpdCB3YXMKICAgICBvcmlnaW5hbGx5IGNvbGxlY3RlZCwgYW5kIHdoYXQgZWFjaCB2YXJpYWJsZSByZXByZXNlbnRzPwogICAtIElmIHRoZSBkYXRhc2V0IGlzIHN1aXRhYmxlIGZvciBzdXBlcnZpc2VkIGxlYXJuaW5nLCB3aGljaCB2YXJpYWJsZShzKSBjb3VsZAogICAgIGJlIGNvbnNpZGVyZWQgYXMgYSB1c2VmdWwgdGFyZ2V0PyBXaGljaCB2YXJpYWJsZShzKSBjb3VsZCBiZSBjb25zaWRlcmVkIGFzCiAgICAgZmVhdHVyZXM/Cgo0LiBJZGVudGlmeSBleGFtcGxlcyBvZiBtaXN1c2Ugb2YgbWFjaGluZSBsZWFybmluZyBpbiBzb2NpZXR5LiBXaGF0IHdhcyB0aGUKICAgZXRoaWNhbCBjb25jZXJuPw==